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Abstract: The formation, growth, and size distribution of precipitates greatly affects the 

microstructure and properties of microalloyed steels.  Computational Particle-Size-Grouping (PSG) 

kinetic models are developed to simulate precipitate particle growth due to collision and diffusion 

mechanisms.  Firstly, the generalized PSG method for collision is clearly explained and verified.  

Then a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and 

coarsening with complete mass conservation and no fitting parameters.  In comparison with the 

original population-balance models, this PSG method saves significant computation and preserves 

enough accuracy to model a realistic range of particle sizes.  Finally the new PSG method is applied to 

simulate the size distribution of NbC and the precipitated fraction of AlN during isothermal aging 

processes, and good matches are found with experimental measurements. 

 

1. Introduction 

The demand for steels with higher strength, ductility, and toughness is always increasing.  

Many alloying additions act to improve these properties through the formation of precipitate particles.  

In addition to precipitation strengthening, the precipitates often act by pinning grain boundaries and 

inhibiting grain growth during steel processes.  This effect arises from the disappearance of a small 

area of grain boundary when it intersects a second phase particle, and is widely acknowledged to 

depend on the volume fraction and particle size of the precipitates[1-4].  Many small particles are more 

effective than a few large particles.  An unfortunate side effect is a decrease in high temperature 

ductility and possible crack formation during processes such as casting and hot rolling due to the 

growth of voids around precipitate particles on the weak grain boundaries.  It is therefore important to 

control the spatial distribution, morphological characteristics, and size distribution of precipitates 

during all stages of steel processing.  These parameters are generally determined by the alloy 

composition, and temperature history.  In high-deformation processes such as rolling, they also 

strongly depend upon strain and strain rate.   



The accurate modeling of precipitate growth includes at least two analysis steps: 1) 

supersaturation, based on equilibrium precipitation thermodynamics, 2) kinetic effects.  Many models 

to predict equilibrium precipitation are available in commercial packages based on minimizing Gibbs 

free energy, including Thermocalc[5,6], FactSage[7], ChemSage[8], JMatPro[9], other CALPHAD 

models[10,11], and other thermodynamic models based on solubility products in previous literature[12-16].  

A recent equilibrium model efficiently predicts the stable formation of typical oxides, sulfides, nitrides 

and carbides in microalloyed steels, by solving the fully-coupled nonlinear system of solubility-

product equations [17].  The model has been validated with analytical solutions of simple cases, results 

of a commercial package, and previous experimental results.  A useful equilibrium model must 

accurately predict the occurrence and stability of precipitates, their equilibrium amounts, and 

compositions, for different steel compositions, phases, and temperatures, in order to calculate the 

supersaturation/driving force for a kinetic model.   

Theoretically, precipitates start to form when the solubility limit is exceeded, but reaching 

equilibrium usually takes a long time.  For most steel processes, especially at lower temperatures, 

equilibrium is seldom approached due to limited time.  Thus, kinetic models of precipitate growth are 

a practical necessity for realistic predictions. 

An early effort to predict phase transformation kinetics is the KJMA model, by Kolmogorov[18], 

Johnson, Mehl[19] and Avrami[20], which is widely used to study precipitation processes and to 

generate TTT diagrams.  The general isothermal KJMA equation to describe transformed fraction, f, 

as a function of time, t, is given by[21] 

( ) 1 exp( )nf t K t= − − ⋅  [1] 

where K is the rate function for nucleation and growth which depends on chemical composition 

and temperature, and n is the Avrami exponent typically ranging from 1-4, which depends on growth 

dimensionality (1-D, 2-D or 3-D), nucleation index (zero, decreasing, constant or increasing 

nucleation rate), and growth index (interface-controlled or diffusion-controlled).  The parameters K 

and n are determined from experimental measurements at different test temperatures and compositions, 

and often vary during precipitation.  Although this model was successfully applied to match some 

precipitated fraction measurements[22,23], its empirical nature prevents it from describing alternate 

thermomechanical processes without refitting the empirical parameters with further measurements.  

Moreover, size distributions are not predicted with this model.   

Precipitates can form at different stages and locations in steelmaking, including: in the liquid 

steel due to collision, the mushy-zone between dendrites due to rapid diffusion during solidification, 

and on the grain boundaries or inside the grains due to slow solid-state diffusion.  This results in 

different composition, morphology and size distribution of precipitates, thus greatly influences the 

steel product qualities.  Precipitate particles grow via two major mechanisms: 1) collision in liquid 



steel, 2) diffusion in both liquid and solid steel.  Both mechanisms have been studied extensively, and 

better computational models are now available with fast improved computer power in recent decades. 

Collision between particles and rapid diffusion in the liquid phase increase the number of large 

particles, and enhance inclusion removal by flotation.  The evolution of particle concentration and size 

distribution due to collisions has been described by the collision frequency between particles per unit 

volume of liquid medium[24], and such models have been successfully applied for various collision 

mechanisms, including turbulent collision[25], Stokes collision[26], Brownian collision[27] and gradient 

collision[28]. 

The entire diffusion-controlled precipitation process in solid typically includes nucleation, 

growth and coarsening stages.  The nucleation stage includes an induction period to form stable nuclei, 

followed by steady-state nucleation, where the number of new particles increases linearly with time[29].  

Such a classical nucleation model[29] has been successfully applied to predict the start of strain-

induced Ti(C,N) precipitation in austenite[30], and the results agree well with measurements inferred 

from stress relaxation experiments[31].   

After nucleation, particles of all sizes can grow due to the high supersaturation that defines the 

growth stage.  After the nucleation and growth stages, precipitates of various sizes are dispersed in the 

matrix phase.  Once the supersaturation has decreased to equilibrium (~1), the solute concentrations in 

the matrix and at the particle/matrix interface are comparable and capillary effects become dominant, 

causing coarsening or Ostwald ripening[32].  Governed by the minimization of the total surface energy, 

coarsening is driven by the difference in concentration gradients near precipitate particles of different 

sizes.  The larger particles are surrounded by low concentration, so grow by diffusion from the high 

concentration surrounding smaller particles, which are less stable and shrink.  Thus, the net number 

density of all particles now decreases with time.   

 Each of these three stages is dominated by different mechanisms, and particle size evolution 

follows different laws.  Coarsening increases with time according to the mean particle size cubed [33,34], 

which is slower than the square relation during the growth stage[35].  More discussion is given 

elsewhere on nucleation[36], growth[37] and coarsening[38] phenomena. 

Although the above phenomena describing precipitation kinetics are well established, most 

models of nucleation, growth and coarsening are empirical curve-fits, with separate calibration 

parameters for each stage.  Moreover, they require simplified conditions and calculate only the 

variation of mean precipitate size with time.  Little information on the size distribution can be 

obtained.  But, different precipitate size distributions can have very different pinning effects on grain 

growth, even with the same mean size.  Thus a fundamental model including all possible precipitation 

mechanisms is needed.   

Molecule-based models such as Smoluchowski[24] for collision and Kampmann[39] for diffusion 

are attractive because the particles agglomerate automatically, particles of all sizes are tracked, and the 



few parameters are fundamental physical constants themselves.  Unfortunately, these  models 

encounter inevitable difficulties when they are applied to simulate practical processes, where 

precipitate size ranges greatly from nuclei ~ 1nm to coarsened particles larger than 100μm.  Realistic 

particles range in size over at least 6 orders of magnitude, and contain from 1 to 1018 single molecules.  

With such an overwhelming linear scale, it is impossible to solve realistic problems using traditional 

models based on molecules.  

Attempting to overcome this difficulty, the Particle-Size-Grouping (PSG) method has been 

introduced in several previous studies and has proven to be very effective in calculating the evolution 

of particle size distributions for collision-coagulation growth over a large size range[40-45].  Rather than 

track each individual particle size, the main idea of this technique is to divide the entire possible 

particle size range into a set of size “groups”, each with a specific mean size and size range.  Careful 

attention is required to formulate the equations to ensure proper interaction and mass conservation[40].  

Several researchers have applied this PSG method to simulate inclusion agglomeration in liquid steel 

due to collisions, coagulation and removal.  Such models have been applied to RH degassers[41], 

continuous casting tundishes[42,43] and ladle refining[44,45].  To start these PSG models, an initial size 

distribution is still required, which can be found from either experimental measurements or 

assumptions.   

To make the PSG method more usable, Nakaoka et al.[46] used different volume ratios between 

neighboring size groups, taking advantage of the exponential increase in sizes that accompany powers 

of 2.  This innovation allows modeling from single molecules to realistic particle sizes with only 20-

80 size groups.  Particle collisions were modeled, considering both inter-group and intra-group 

interactions, and numerical results agreed well with experimental agglomeration curves.  However, 

very little work has been done to apply the PSG method to diffusion, which is the dominant 

mechanism for precipitate growth in many processes including steel casting and rolling.  One study by 

Zhang and Pluschkell[47], coupled both collision and diffusion into a PSG model, but inter-group 

diffusion was not considered.  Zhang[48] included a discrete-sectional technique by Gelbard[49] and 

Wu[50] into the PSG model, but this weakens the efficiency of the method and the accuracy of the 

treatment of diffusion and the insurance of mass conservation has not been verified.  No previous 

study has demonstrated accurate simulation of diffusion using a PSG method. 

The purpose of the present study is to develop accurate PSG methods to simulate precipitate 

growth due to both collision and diffusion mechanisms.  The standard PSG method for collision 

problem is developed first, and a new PSG method for diffusion is created.  Both methods are verified 

by comparison with exact solutions of the primary population equations in test problems.  The new 

PSG method is shown to be a very time-efficient calculation with complete mass balance and high 

accuracy.  Finally, the new PSG method is applied to simulate several practical precipitation processes 

in solid steels, and compared with experimental measurements. 



 

2. Particle collision model  

The population balance model for collision first suggested by Smoluchowski[24] is: 
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where ni is the number of size i particles per unit volume, or “number density”, and Фi,j is the collision 

kernel between size i and size j particles.  The first term on the right-hand side generates size i 

particles due to the collision of two smaller particles, and the second term decreases the number of 

size i particles by their collision with particles of any size to become larger particles.  The generation 

term is halved to avoid counting collision pairs twice.  However, when two particles generating size i 

particles have same size, the generation term should not be halved because the collision pair is unique.   

Moreover, the loss term should be doubly counted when size i particles collide with themselves.  The 

number of molecules composing the largest agglomerated particle must be a finite number iM in 

numerical computation.  Making these appropriate changes gives the following improved expression: 
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where δi,k is the Kronecker delta, δi,k=1 for i=k and δi,k=0 for i≠k.When i=1, the population 

balance for dissolved single molecules simplifies to: 
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Thus the number density of single molecules always decreases with collisions.  Evaluating 

equations [3]-[4] requires summing over and tracking every possible size from 1 to iM molecules, so is 

not practical for realistic particle sizes.  Results from these equations, however, comprise the exact 

solution for collision test problems. 

 

3. Precipitate particle diffusion model 

Kampmann[39] suggested the following diffusion-controlled model to treat the kinetics of 

nucleation, growth and coarsening as one continuous and simultaneous process.  

1 1 1 1 1 1 1 ( 2)i
i i i i i i i i i i

dn
n n n n A n A n i

dt
β β α α− − + + += − + − + ≥  [5] 

where βi, αi and Ai are the diffusion growth rate, dissociation rate and reaction sphere surface 

area for a size i particle containing i molecules.  The first and second terms on the right-hand side 

account for the loss and generation of size i particles due to “diffusion growth” by adding single 

molecule to size i and i-1 particles respectively.  The third and fourth terms account for the loss and 

generation of size i particles due to particle “dissociation” by losing single molecule from size i and 



i+1 particles respectively.  For single molecules, i=1, the special cases of double loss when two 

molecules react with each other and double generation of single molecules when size 2 particles 

dissociate are not counted exactly in Kampmann’s initial work.  Thus the following revised balance 

equation is suggested here: 
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Assuming a uniform spherical concentration field of single molecules with a boundary layer 

thickness approximated by ri around each size i particle, the diffusion growth rate of size i particles is 

expressed by[39]: 

4i iDrβ π=  [7] 

where D is the diffusion coefficient in the matrix phase, and ri is the radius of size i particles.  As 

precipitation reactions always involve more than one element, this coefficient is chosen for the 

slowest-diffusing element, which is assumed to control the diffusion rate. Because the diffusion of 

interstitial elements such as O, S, N, C is fast, the diffusion rate is usually determined by the diffusion 

coefficient of the alloying metal element in the precipitate.  

The following relation is assumed for the dissociation rate, which is the number of molecules 

lost per unit surface area of size i particles per unit time, based on a mass balance of a particle in 

equilibrium with the surrounding matrix phase [39]: 

1 1/ /i i i i i in A Dn rα β= =  [8] 

The concentration of single molecules, 1in , in equilibrium around the surface of the size i 

particle is needed to evaluate this equation.  This is estimated using the Gibbs-Thompson equation, 

and decreases with increasing particle size as follows[51]: 
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where n1,eq is the number density of dissolved single molecules in equilibrium with a plane interface of 

the precipitate phase, σ is the interfacial energy between the precipitate particles and the matrix phase, 

VP is the molar volume of the precipitate, Rg is the gas constant, and T is the absolute temperature.  

This equation indicates that increasing particle radius causes the nearby solute concentration to 

decrease greatly, by several orders of magnitude.  

Equations [5]-[9] include the effects of equilibrium, diffusion growth, dissociation, curvature 

effects and mass conservation, with parameters all having appropriate physical significance.  Results 

from these equations are regarded as the exact solution for diffusion test problems. 

 



4. Particle-Size-Grouping (PSG) method 

From a theoretical point of view, these molecule-based population-balance models in the 

previous section are accurate and the integration of their set of governing equations is straight forward.  

However, the computational cost quickly becomes infeasible for realistic particle sizes.  The PSG 

method is introduced here to overcome this difficulty.  The fundamental concept of the PSG method is 

shown schematically in Fig. 1.  In this method, the particles are divided into different size groups (size 

group number j) with characteristic volume Vj and characteristic radius rj.  The number density of 

particles of size group j is defined as 
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This summation covers all particles whose volume lies between two threshold values.  The 

threshold volume that separates two neighboring size groups, Vj,j+1, is assumed to be the geometric 

average of the characteristic volumes of these two groups, instead of the arithmetic average used in 

previous works[46,47]: 

, 1 1j j j jV V V+ +=  [11] 

If a newly-generated particle has its volume between Vj-1,j and Vj,j+1, it is counted in size group 

j.  The increase of number density of size group j particles is then adjusted according to the difference 

between the volume of the new particle and Vj, in order to conserve mass.   

The volume ratio between two neighboring size groups is defined as 
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To generate regularly-spaced threshold values, RV is usually varied.  However, for constant RV, 

the PSG characteristic and threshold volumes can be expressed as: 
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where the volume of a single molecule, V1, is computed using the molar volume of its precipitate 

crystal structure, VP: 
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where NA is Avogadro’s number, and the small effects of temperature change and vacancies are 

neglected.  Since the particle volume is calculated from a bulk property, VP, consideration of the 

packing factor is not needed.  The number of molecules contained in a given PSG volume is  
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In the PSG method, it is easy to introduce fractal theory to consider the effect of particle 

morphology.  The effective radius of a particle can be expressed by  
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where Df is the fractal dimension, which can vary from 1 (needle-shaped precipitates) to 3 (complete 

coalescence into smooth spheres).  Tozawa[52] proposed Df=1.8 for Al2O3 clusters in liquid steel, and 

Df=3 is adopted everywhere in this work for simplicity.    

After the number of single molecules composing the largest agglomerated particles iM is 

determined, the corresponding total number of size groups GM must be large enough for the second 

largest size group to contain the largest agglomerated particle, iM.  Thus, for constant RV, GM must 

satisfy: 

(log ) 2
VM R MG ceil i≥ +  [17] 

The largest size group is a boundary group which always has zero number density.  The 

accuracy of the PSG method should increase with decreasing RV, as more size groups are used.  From 

the logarithm relation shown above, it can be seen that the PSG method is very efficient for real 

problems with a large range of particle sizes. 

 

4.1 PSG method for collision 

Applying the PSG method to model colliding particles involves the following rules, affecting 

size group j:  

1). A size group j particle colliding with a small particle, from group 1 to kc,j, remains in group j, and 

increases the number density, Nj. 

2). A group j particle colliding with a relatively large particle, from a group larger than kc,j, generates a 

particle in group j+1 or higher. 

3). A group j-1 particle colliding with a particle from group kc,j to j-1 generates a group j particle. 

Combining these rules gives the following equation, where the coefficients involving mean 

volumes are needed to conserve volume, 
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The RV ranges in Eq. [19] are found by solving the following equations, after inserting the Eq. 

[13] expressions: 

, 1 , 1c jj k j jV V V+ ++ >  [20] 

Finally, the number density of single molecules is calculated by 
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Equations [18], [19] and [21] are integrated over time for all size groups. The small number of size 

groups enables the model to simulate practical problems. 

 

4.2 PSG method for diffusion 

Applying the PSG method to solid-state diffusion processes would appear to involve fewer 

rules than the particle collision method just presented, because precipitate particle growth by diffusion 

involves gain or loss of only one individual molecule at a time.  However, adding single molecule to a 

particle very rarely gives enough particle growth to count it in the next larger size group.  In addition, 

size groups j-1, j and j+1 all influence the evolution of size group j number density during a given 

time interval.  Thus, some knowledge of the particle distribution inside each size group is necessary, 

especially near the size group thresholds where the inter-group interaction occurs.  This requires 

careful consideration of diffusion growth and dissociation both inside and between size groups.   

All particles inside a size group j will still stay in group j even after a diffusion growth or 

dissociation event, except for those “border sizes” which fall on either side of the threshold sizes 

which define the neighboring size groups: L
jn  (closest to Vj-1,j) and R

jn (closest to Vj,j+1).  Size group j 

particles also can be generated if particles 1
R
jn −  from size group j-1 jump into size group j by diffusion 

growth or particles 1
L
jn +  from size group j+1 fall into size group j by dissociation.  At the same time, 

size group j particles can be lost if particles R
jn  jump to size group j+1 by diffusion growth or 

particles L
jn  fall to size group j-1 by dissociation.  These considerations are incorporated into a new 

PSG method, taking care to conserve mass, as follows: 

1 1
1( ) ( )j R L

j j j j j j j
j j

dN m m
N N n A N n

dt m m
β α= − − −  



1, , 1
1 1 1 1 1 1

( ) ( )j j j jR R L L L
j j j j j

j j

ceil m floor m
N n A n

m m
β α− +

− − + + ++ +  

, 1 1,
1

( ) ( )
( 2)j j j jR R L L L

j j j j j
j j

floor m ceil m
N n A n j

m m
β α+ −− − ≥  [22] 

where L
jn  is the number density of those particles in size group j which fall into size group j-1 by 

losing one molecule, and R
jn  is the number density of those particles in size group j which jump into 

size group j+1 by gaining one molecule.  Function ceil calculates the smallest integer which is not less 

than the given real number, and floor for the largest integer which is not larger than the given real 

number.  In Eq. [22], the first and second terms on the right-hand side account for the diffusion growth 

and dissociation inside size group j, and the third and fourth terms account for the generation of size 

group j particles by inter-group diffusion growth and dissociation.  The last two terms are for loss of 

size group j particles due to the diffusion growth and dissociation of size group j particles themselves. 

  Single molecules are a special case because they comprise a group which interacts with all 

other size groups.  Thus, the new PSG method for diffusion uses the following population balance 

equation for j=1:  
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The diffusion growth rate βj, and dissociation rate αj of size group j particles needed to solve 

Eqs. [22-23] are calculated with Eqs. [7-9] using the characteristic (mean) radius given by Eq. [16].  

The radius, diffusion growth rate, and dissociation rate for the border-sized particles are:  
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The particle number densities for the border sizes L
jn  and R

jn  are estimated from a geometric 

progression approximation 
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In order to propagate particle growth, if 0L
jn ≠  and 1 0C

jn + = , R
jn  is calculated by 
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The particle number density at the center of each size group j is calculated by assuming two 

geometric progressions inside each size group 
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The average number density of size group j is calculated as  
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Since the boundary (ceil, floor) and mean values of size groups are used directly and RV is not 

explicitly found in these equations, this model is very flexible to apply.  This allows arbitrary size 

increments between groups in a single simulation, making it easy to improve accuracy with smaller RV 

in size ranges of interest and to improve computation with larger RV in other sizes.  Alternatively, the 

group sizes can be chosen to produce linearly-spaced particle radius intervals, needed to compare with 

experiments. 

 

5. Validation of new PSG method with test problems 

 

5.1 Collision test problem 

Saffman[25] suggested the turbulent collision frequency per unit volume of liquid medium to be: 

1/ 2 31.3 ( / ) ( )ij i ja r rε νΦ = +  [32] 

where ε  is turbulent energy dissipation rate and ν  is kinematic viscosity.  The empirical coefficient 

a  was suggested by Higashitani[53] and is assumed constant here.  This model has been often applied 

to study inclusion agglomeration in liquid steel[41-45,47,48].  It is chosen here as a test problem to 

validate the collision model, using the complete integer-range equations in Section 2.1 as the exact 

solution.  

Substituting into the dimensionless form of number density and time: 

*
0/i in n n= , * 1/ 2 3

1 01.3 ( / )t a r n tε ν=  [33] 



where n0 and r1 are the initial number density and the radius of single molecules.  The initial condition 

is given by ni
*=1 for i=1 and ni

*=0 for i>1.  The size of the largest agglomerated particle is iM=12000, 

so that accuracy within 0.05% error in the total particle volume is guaranteed up to t*=1.  The 

boundary condition is always zero number density of the largest agglomerated particle (exact solution) 

and for the largest size group (PSG method).  The Runge-Kutta-Gill method is applied for time 

integration with a time step of Δt*=0.0025.  Smaller time step sizes produce negligible difference. 

The total dimensionless number density of molecules and particles are defined as 
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=  for PSG method [34] 

The mass balance requires NM
* to be constant (equal to 1) through the entire calculation.  Fig. 2 

shows the total particle volume is conserved for both the exact solution and PSG method.  There is 

also good agreement between both cases for RV=3 and RV=2 for the total particle number density, 

which decreases with time due to agglomeration.  Fig. 3 shows that the evolution of the number 

densities of each size group with time from the PSG method also agrees reasonably with the exact 

solution for both RV cases.  With smaller RV, accuracy of the PSG method increases as expected.   

As time increases, collisions form large particles, leaving fewer smaller particles.  For example, 

size group N10 in RV=2 contains all particle sizes from 363 to 724 molecules, with a central size of 512 

molecules.  The number density of the size group increases at early times, reaches a maximum, and 

decreases at later times.  The exact solution has limited maximum time, owing to its prohibitive 

computational cost.  The tremendous computational efficiency of the PSG method is seen by 

examination of Table I.   

 

5.2 Diffusion test problem 

To validate the PSG diffusion model, a test problem is chosen where the total number density 

of single molecules in the system are produced by an isothermal first order reaction[39] 

* * * * *
1,

1

( ) ( ) / 9[1 exp( 0.1 )]
Mi

s s eq i
i

n t n t n i n t
=

= = ⋅ = − −  [35] 

The number density of dissolved single molecules must be adjusted with time, to match the increase of 

ns
*.  This increase with time can be interpreted as an increase in supersaturation due to decreasing 

temperature in a practical cooling process.  The dimensionless terms are defined as 
*

1,/i i eqn n n= , *
1 1 1,4 eqt D r n tπ=  [36] 



To calculate the dissociation rate in Eq.[9], 2σVP/(RgTr1)=3.488[39].  The initial condition is no 

particles, or ni
*=0 for i≥1.   

 The boundary condition is always zero number density for the largest agglomerated particle 

(exact solution) or for the largest size group (PSG method).  The maximum size of agglomerated 

particle is chosen as iM=50000, to ensure that mass conservation is satisfied up to t*=10000.  The 

explicit Runge-Kutta-Gill method was used for integration with time step size of Δt*=0.01 chosen for 

accuracy.  The maximum time step for stability is 0.04 for both methods for this problem. 

As shown in Fig. 4, the total volume of particles is conserved for both the exact solution and 

the PSG method.  This total increases with time and asymptotes at 9, according to Eq. [35].  The 

number density histories from all 3 cases also agree.  Its behavior can be explained by examining Fig. 

5.  

 Fig. 5 shows how the particle size distribution evolves, due to the changing concentration 

gradients near particles of different size groups.  At early times, all size group particles grow owing to 

the driving force of increasing supersaturation.  At later times, the results show Ostwald ripening.  The 

large particles have low concentrations, so tend to grow at the expense of smaller particles, which 

have high local concentrations, and eventually shrink.  For example, size group N1 (dissolved single 

molecules) reaches its peak and starts to decrease in number after t*=20.  There is reasonable 

agreement for both total particle number density and number densities of each size group between the 

PSG method and the exact solution for both cases of RV=3 and RV=2.  Results for RV=2 naturally 

match the exact solution more closely. 

 

5.3 Computation times 

The computation times for both test problems are listed in Table I.  All the calculations are run 

with Matlab on Dell OPTIPLEX GX270 with P4 3.20GHz CPU and 2GB RAM in order to enable a 

fair comparison.  The computational cost dramatically reduces for the PSG method.  It is interesting to 

note that the computation cost for the collision problem is proportional to iM
2 for the exact solution or 

GM
2 for the PSG method, while it is proportional to iM or GM respectively for the diffusion problem.  

Because the details of particle distribution inside the size groups must be captured to enable an 

accurate solution in a diffusion problem, the time saving is not as large.  The savings increases 

exponentially with increasing maximum particle size.  This is enough to make practical precipitation 

calculations possible, considering that less than 60 size groups covers particle sizes up to 100μm with 

constant RV=2 for most nitrides and carbides in microalloyed steels. 

 

6. Practical applications 

 When the PSG method is applied to model a real precipitation process, additional models are 

needed for the temperature history and corresponding mass concentrations of each element dissolved 



at equilibrium.  The current work assumes the temperature history is given and uses a 13-element and 

18-precipitate equilibrium precipitation model for microalloyed steels[17].  This model includes 

solubility limits for oxide, sulfide, carbide, and nitride precipitates in liquid, ferrite and austenite, the 

influence of Wagner interaction on activities, and mass conservation of all elements during 

precipitation.  Mutual solubility is incorporated for appropriate precipitates with similar crystal 

structures and lattice parameters.   

For a given steel composition and temperature history, the first step is to use the equilibrium 

model to compute the dissolved molar concentrations of every element at every temperature, and to 

identify the critical element, which restricts the number of single molecules available to form the 

precipitate of interest, as a function of time.  The initial condition starting from the liquid state is 

complete dissolution with the number density of single molecules, N1(t=0), equal to the total number 

density, ns, of the precipitate of interest.  For a given steel composition containing M0 of element M, 

and X0 of element X, then ns for precipitate MxXy is  

0 0min ,
100 100

steel steel
s A A

M X

M X
n N N

xA yA

ρ ρ 
=  

 
 [37] 

where AM is the atomic mass of element M, and ρsteel is the density of the steel matrix 

(7500kg·m-3).  All other particle sizes have zero number densities.   

Sometimes, such as after a solution treatment, some of the initial processing steps from the 

liquid state can be ignored or replaced with a measured initial distribution.  Because the current model 

can handle only one precipitate, the initial composition must be the dissolved concentration available 

for that precipitate after taking away the other precipitates that form first.  For example, in the cases 

involving nitride AlN formation, a new Al concentration is used after subtracting the more stable 

oxide Al2O3. 

The equilibrium number density of single molecules of the precipitate in the steel, n1eq, is 

calculated from the dissolved mass concentrations [M] and [X] at equilibrium in the same way: 

1,

[ ] [ ]
min ,

100 100
steel steel

eq A A
M X

M X
n N N

xA yA

ρ ρ 
=  

 
 [38] 

Although the current work only calculates size distributions for a single precipitate, other alloys may 

affect the results by forming other precipitates which change the equilibrium dissolved concentrations 

of the elements in the precipitate of interest.  These effects are included through the equilibrium model, 

in addition to Wagner interactions [17].   

 The PSG kinetic model is then run, knowing the history of the equilibrium number density of 

single molecules of the chosen precipitate.  The diffusion coefficients and dissociation rates in Eqs. [7-

9] and [24-26] are updated for each time step according to the temperature history. This model 

calculates how the particle size distribution evolves with time.  



When running the PSG model, time steps must large enough to enable reasonable computation 

times, while avoiding stability problems due to dissociation exceeding diffusion growth.  Thus, the 

implicit Euler scheme is adopted here to integrate Eqs. [22-31] through time: 
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where i is the time-step index.  This implicit scheme allows over 104–fold increase in time step size 

comparing with the original explicit scheme, for realistic precipitate/matrix interfacial energies 

~0.5J/m2.  The above equation system is solved with the iterative Gauss-Seidel method until the 

largest change of 1i
jN +  converges to within less than 10-5 between two iterations.  The upper limits of 

L
jn  and R

jn  are 1i
jN + , and are evaluated at each iteration.  Although this scheme is stable for any time 

step size, its accuracy may deteriorate if the time step is too large.  Thus a reasonable time step must 

be chosen where results stay almost the same with a smaller time step. 

Having validated mass conservation with test problems, the number density of single molecules 

is then computed as follows, in order to save computation time relative to Eq. [23]  

1 1
1

2

MG
i i

s j j
j

N n m N+ +

=

= −  [40] 

To post-process the results, the total number density of precipitate particles np, precipitated 

fraction fP and the average precipitate particle radius Pr  are computed from the number densities as 

follows: 
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where size group GT, which contains particles just larger than a “truncating” threshold radius rT-1,T, is 

introduced to define the split between “dissolved” and measurable particles.  This parameter must be 

introduced because all experimental techniques have resolution limits, while the current PSG model 

simulates particles of all sizes including single molecules. 

The complete PSG model is applied here to two different example precipitate systems, where 

measurements were available for validation. 

 

6.1 Size distribution for isothermal NbC precipitation 

The first validation problem is to simulate the size distribution of Nb(C,N) precipitate particles 

in steel containing 20%Cr, 25%Ni, 0.5%Nb, 0.05%C+N, to compare with the isothermal precipitation 

experiments of Jones and Howell[54].  The steel specimens were solution treated at 1350oC, quenched 

to the aging temperature of 930oC and held for 1800s, with no deformation.  Carbon extraction 

replicas were used to measure particle size distributions, which can detect precipitates (nuclei) with 

diameters less than 2nm[55].  To compare with the measurements, a truncating radius of 0.5nm was set 

in the simulation. Precipitation was calculated assuming NbC precipitate formation with 0.05%C.  

Nitrogen was neglected because its content was not reported, the PSG model can simulate only one 

precipitate type, and carbon is always much more plentiful than N.  The diffusion coefficient of Nb in 

austenite is taken as DNb(m
2/s)=0.83×10-4exp(-266500/RT)[56], molar volume of NbC is VP=13.39×10-

6m3/mol[57], and the interfacial energy is calculated in the appendix.  

The equilibrium calculation in Fig. 6 predicts that the NbC precipitates begin to become stable 

at 1310oC, and the equilibrium dissolved mass concentration of carbon in steel is 0.0052wt% at 

T=930oC.  In order to compare with the experimental data, RV was set equal 2 for particles with radius 

smaller than 3nm, and varied to give 1nm size groups for 3-15nm, 1.5nm size groups for 15-24nm, 

3nm size groups for 24-36nm, and 6nm size groups for 36-48nm.  A total of 38 size groups were used 

to model particle sizes up to 48nm, the largest particle observed in the experiments.  The implicit time 

step is 0.001s with maximum of iteration 10000 for convergence.  Rapid quenching from solution 

treatment to aging temperature and from aging to ambient is assumed, so only an isothermal 

simulation at 930oC is performed. 

The measured particle size distribution / volume number frequency in the steel matrix is 

normalized and compared with simulation results in Fig. 7.  The actual mean radius of NbC particles 

was 9.3nm in experiment and 8.13nm in simulation and the particle size distributions also match 

reasonably.  The measured size distribution is wider than the simulation results.  This is likely due to 

the grain boundaries, segregated regions, and dislocations present in the steel microstructure, where 

easier nucleation and higher diffusion rate can form locally larger precipitates, leaving smaller 

particles elsewhere where the concentration is lower.  In addition, the uncertain presence of other 

alloys in the steel, such as nitrogen leading to possible Nb(C,N) precipitation, and Cr leading to 



Cr(C,N), could enable local heterogeneous nucleation, higher dissolved concentration 

(supersaturation), and changes in interfacial energy.  Such precipitates could form earlier and become 

nucleation sites for accelerated NbC precipitation.   

 

6.2 Precipitated fraction for isothermal AlN precipitation 

The second validation problem for the PSG diffusion model was to simulate the isothermal 

precipitation of AlN in a 0.09%C, 0.20%Si, 0.36%Mn, 0.051%Al and 0.0073%N steel for the 

experimental conditions measured by Vodopivec[58].  Specimens were solution treated at 1300oC for 2 

hours, “directly” cooled to the precipitation temperature of 840oC or 700oC, aged for various times, 

and quenched.  The AlN content in steel was measured using the Beeghly method[59].  Because it has 

been suggested that Beeghly technique cannot detect fine precipitate particles which could pass 

through the filter[60,61], the truncating precipitate radius is set to 2.0nm in the simulation to match the 

measurements.  

The initial experimental measurements (zero and short aging times) report 6.4% of the total N 

(N0=0.0073%) precipitated as AlN, perhaps because the cooling stages were not fast enough.  The 

final precipitated amounts of nitrogen as AlN do not reach the predictions of the equilibrium model, 

even after long holding times, when the precipitated fraction becomes nearly constant.  This might be 

due to N consumed into other types of nitrides.  Thus the measurements are normalized to zero at zero 

aging time, and (N0-[N])/N0 at long times. 

As shown in Fig. 6, the equilibrium model[17] predicts AlN to start forming at 1236oC, and the 

equilibrium dissolved concentration of nitrogen in steel is ~0.00022wt% at 840oC (ПN=33.2) and 

~0.0000031wt% at 700oC (ПN=2370).  A sharp decrease of equilibrium dissolved aluminum 

concentration can be seen over the γ→α phase transformation (865oC to 715oC) due to the lower 

solubility limit of AlN in ferrite predicted by the equilibrium model.   

Isothermal precipitation simulations of 1 hour (700 oC) and 3 hours (840 oC) were run, 

neglecting the cooling histories before and after, which were not clearly reported.  The molar volume 

VP of AlN is 12.54×10-6m3/mol[57] and the diffusion coefficient of Al in steel DAl(m
2/s) is taken as 

2.51×10-4exp(-253400/RT)[62] in austenite, and 0.3×10-2exp(-234500/RT)[57] in ferrite.  The interfacial 

energies for these two precipitation temperatures are calculated in the appendix, where the value is 

seen to be 10% higher in ferrite (700oC) than in austenite (840oC).  The number densities of 

precipitate particles are calculated based on the nitrogen concentration, because this element is 

insufficient when reacting with aluminum to form AlN for this steel composition.  Constant RV=2 and 

32 size groups are used in the simulation, which covers particle radii up to around 200nm.  The time 

step is 0.001s with ~1000 decreasing to ~100 iterations required within each time step for convergence 

of the implicit method with Gauss-Siedel solver. 



The predicted AlN precipitate fractions are shown and compared with experimental 

measurements in Fig. 8.  Good matches are found at both temperatures.  The calculation verifies the 

experimental observation of much faster precipitation in ferrite than in austenite, due to the lower 

solubility limit of AlN and the faster diffusion rate of aluminum in ferrite than in austenite. 

The calculated evolution of the size distribution of AlN particles at each aging temperature is 

depicted in Fig. 9.  Neglecting the numerical wiggles, each curve has the same characteristic shape, 

which evolves with time.  The number densities decrease with increasing particle size, reach a 

minimum, increase to a maximum, and finally decrease to zero.  With increasing time, the number 

density of single molecules decrease from the initial value, ns, to the equilibrium value n1,eq.  Very 

small particles in the first few size groups (~<0.5nm), are unstable, as the chance of gaining molecules 

is less than that of losing molecules, owing to the high surface curvature.  Thus, their number densities 

decrease with size, owing to the decreasing chance of a larger unstable “embryo” of molecules coming 

together.  The minimum corresponds to the critical nucleus size.  Particles with the critical size are 

expected to be the most rare.  With increasing size above the critical, molecule attachment 

increasingly exceeds dissolution, so these stable particles grow increasingly faster and become larger.  

Very large particles are rare simply due to insufficient growth time.   

The entire size distribution grows with time.  Except for the small unstable particles which 

decrease in number, all other sizes increase in number during this period.  For example at 840oC, the 

maximum particle radius increases from 10nm at 100s to 65nm at 3000s, while the peak number 

density increases from 2nm to 10nm.   

After this growth stage, single molecules reach equilibrium concentration.  Smaller particles 

decrease slowly in number due to dissolution, which provides single molecules for the slow growth of 

large particles. This is the particle coarsening or “Ostwald ripening” stage.  The time for the beginning 

of this final precipitation stage can be found from the maximum total number of particles, shown in 

Fig.10 to occur at ~3000s for aging at 840oC and ~100s for aging at 700oC.  These times match with 

the sudden changes in slope of precipitated fraction that are both predicted and measured in Fig. 8.   

 

5.3 Discussion  

The calculated size distribution of NbC particles and the precipitated amount of AlN both 

match well with experiments.  This is significant because no fitting parameters are introduced in this 

model.  The match is governed by the equilibrium dissolved concentration (supersaturation) calculated 

from the equilibrium model, and the choice of the physical parameters: diffusion rate and interfacial 

energy. 

The model results quantify and provide new insight into the classical stages of precipitate 

nucleation, growth, and coarsening.  For example, the minimum in the number density distributions in 

Fig. 9 corresponds to the critical precipitate particle size for stable nucleation.  Classical nucleation 



theory balances the decrease in volumetric free energy ΔGV in forming a spherical nucleous with the 

energy increase to form the new interface, σ, and gives the critical minimum radius for a stable 

nucleus[63] rc of:  
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where ΔGV for a single precipitate system such as AlN is: 
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where Ala  and Na  are the activities of Al and N respectively.  Because the dissolved mass 

concentrations and activities of Al and N decrease with time, the critical radius decreases with time 

during the isothermal precipitation process, reaching equilibrium values of 0.70nm at 840oC and 

0.40nm at 700oC[17].  Both the trend of decreasing critical radius with time and these final values 

roughly match with the minimum of the number density distributions in Fig. 9. 

It is important to mention that the results here are only approximate because only one type of 

precipitate is modeled of the many that actually form in steel, and only homogeneous nucleation in the 

matrix phase is simulated.  Competition between the different precipitates for the alloy elements, such 

as different nitrides attracting nitrogen, causes inaccuracies that can be addressed by generalizing the 

current model to handle multiple precipitates.  Such an enhanced multiphase precipitate model is also 

needed to account for previously formed precipitates which act as heterogeneous nucleation sites for 

new precipitates of different composition.  Furthermore, microsegregation changes the alloy 

composition at grain boundaries, where increased vacancy concentration also increases diffusion rates. 

Finally, deformation influences precipitation kinetics by increasing the nucleation and growth rate, 

leading to a much finer particle size distribution[54,64].  These effects on precipitation behavior will be 

addressed in future improvements to this model. 

 

Conclusions: 

1. The particle size group (PSG) population-balance method for modeling particle collision has been 

derived for an arbitrary choice of size ratio RV and good agreement has been verified with exact 

solutions. 

2. A new, efficient PSG population-balance method for diffusion-controlled particle growth has been 

developed. Results match the exact solution of Kampmann within a reasonable tolerance.  The method 

features geometrically-based thresholds between each size group, reasonable estimates of border 

values in order to accurately include intra-group diffusion, corresponding accurate diffusion between 

size groups, and an efficient implicit solution method to integrate the equations. 



3. The new PSG method can simulate particle nucleation, growth, and coalesence due to collision and 

diffusion over a wide size range or particles with low computational cost and reasonable accuracy.  

Accuracy of the method increases with decreasing RV as more size groups are used to cover the given 

particle size range. 

4. The new PSG method has been applied to two realistic validation problems. The computed size 

distributions of NbC and the precipitated fraction of AlN match reasonably with previous 

experimental measurements in microalloyed steel without using any fitting parameters. Precipitation 

in ferrite is found to be greatly accelerated due to the lower solubility limit and higher diffusion rate of 

these precipitates in this phase.  

5. The new PSG method is available to simulate realistic nonequilibrium precipitation behavior during 

various steel processes, such as continuous casting, for arbitrary temperature histories.  Future work 

will incorporate other important effects into this kinetic model, such as multi-precipitate growth and 

deformation-induced precipitation. 

 

Appendix: Calculation of interfacial energy 

According to Turnbull[65] and Jonas[66], the interfacial energy consists of two parts: a chemical 

part ( cσ ) and a structural part ( stσ ), so that 

c stσ σ σ= +  [A1] 

The chemical interfacial energy is estimated from the difference between the energies of 

bonding broken in the separation process and of bonds made in forming the interface, with only the 

nearest neighbors considered. As given by Russell[32] 
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where ΔE0 is the heat of solution of precipitates in a dilute solution of matrix, Ns is the number of 

atoms per unit area across the interface, Zs is the number of bonds per atom across the interface, Zl is 

the coordinate number of nearest neighbors within the crystal lattice, and XP and XM are the molar 

concentrations of the precipitate forming element in the precipitate (P) and matrix (M) phase 

respectively.  ΔE0 is estimated to equal –ΔH, the heat of formation of the precipitate. 

Van Der Merwe[67] presented a calculation of structural energy for a planar interface.  When the 

two phases have the same structure and orientation, but different lattice spacing, the mismatch may be 

accommodated by a planar array of edge dislocations.  Including the strain energy in both crystals, 

stσ  is given as 
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where e
Ma  and e

Pa  are the effective nearest-neighbor distance across the interface, which are 

estimated from the lattice parameters aM, aP and interface orientations, c is the spacing of a reference 

lattice across the matrix/precipitate interface. μM, μP and μI are shear modulii in the matrix (M), 

precipitate (P) and interface (I) respectively; νM and νP are Poisson’s ratios. δ is the lattice misfit 

across the interface. 

The crystallographic relationships between the AlN (h.c.p.), NbC (f.c.c.), and steel matrix 

austenite phase (f.c.c.) or ferrite phase (b.c.c.) are chosen as 

(111) //(111)NbC Feγ −
[32,66], (0001) //(111)AlN Feγ −

[68,69] and (0001) //(110)AlN Feα −
[70]  

The physical properties in the calculation are  

2 6 2( / ) 341.32 4.98 10 1.12 10 2813/AlNH KJ mol T T T− −−Δ = − × − × − [71] 

2 6 2( / ) 157.76 4.54 10 3.84 10NbCH KJ mol T T− −−Δ = − × − × [72] 

[ ]( ) 81 1 0.91( 300) /1810Fe GPa Tγμ − = − − [73], 0.29Feγν − = [74], ( ) 0.357Fea nmγ − = [57] 

[ ]( ) 69.2 1 1.31( 300) /1810Fe GPa Tαμ − = − − [73], 0.29Feαν − = [74], ( ) 0.286Fea nmα − = [57] 

( ) 127AlN GPaμ = [75], 0.23AlNν = [75], ( ) 0.311AlNa nm = , ( ) 0.497AlNc nm =  [57] 

[ ]( ) 134 1 0.18( 300) / 3613NbC GPa Tμ = − − [73], 0.194NbCν = [73], ( ) 0.446NbCa nm = [57] 

For γ-Fe (111) plane, 3Fe
sZ γ − =  and 24 /( 3 )Fe

s FeN aγ
γ

−
−= .  For α-Fe (110) plane, 

4Fe
sZα − =  and 22 /Fe

s FeN aα
α

−
−= .   For both f.c.c. and h.c.p. precipitate structures, 12lZ = .  The 

calculated interfacial energy decreases slightly as temperature increases, and also decreases for NbC 

(relative to AlN) because its crystal structure matches the austenite matrix.  The values used in the 

current simulations are:   

2(930 ) 0.540 /Fe o
NbC C J mγσ − =  

2(840 ) 0.908 /Fe o
AlN C J mγσ − =  , 2(700 ) 0.997 /Fe o

AlN C J mασ − =  
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Nomenclatures: 

a : Empirical coefficient for turbulence collision 

,M Pa a : Lattice parameter of the steel matrix and precipitate phase (m) 

c : Spacing of a reference lattice across the interface (m) 

f : Transformed fraction in phase transformation 

Pf : Precipitated fraction in precipitation process 

Mi : Number of molecules for the largest agglomerated particle in simulation 

n : Avrami exponent in KJMA model 

0n : Initial total number density of single molecules for collision problem (#·m-3) 

1,eqn : Equilibrium concentration of dissolved single molecules for diffusion problem (#·m-3) 

in : Number density of size i particles (#·m-3) 

pn : Total number density of precipitate particles (#·m-3) 

sn : Released number density of single molecules for diffusion problem (#·m-3) 



C
jn : Number density of particles at the center of size group j (#·m-3) 

L
jn : Number density of border particles, representing the smallest particles in size group j (#·m-3) 

R
jn : Number density of border particles, representing the largest particles in size group j (#·m-3) 

( )i jr r : Characteristic radius of size i particles (or size group j particles) (m) 

1,j jr − : Threshold radius to separate size group j-1 and size group j particles in PSG method (m) 

cr : The critical radius for nucleation (m) 

Pr : Average precipitate particle size (m) 

t : Time (s) 

Δt: Time step size in numerical computation (s) 

( )i jA A : The surface area of size i particles (or size group j particles) (m2) 

MA : Atomic mass unit of element M (g·mol-1) 

D : Diffusion coefficient of the precipitation in the parent phase (m2·s-1) 

fD : Fractal dimension for precipitate morphology 

MG : Number of size groups for the largest agglomerated particle in PSG method 

TG : Truncating size group in PSG method to match experimental resolution 

K : Rate function for nucleation and growth in KJMA model 

0M : Total mass concentration of alloying element M in the steel composition (wt%) 

[ ]M : Equilibrium mass concentration of alloying element M (wt%) 

jN : Total number density of size group j particles in PSG method (#·m-3) 

AN : Avogadro number (6.022×1023 #·mol-1) 

MN : Total number density of molecules (#·m-3) 

sN : Number of atoms per unit area across the interface (#·m-2) 

TN : Total number density of all particles (#·m-3) 

gR : Gas constant (8.314 J·K-1·mol-1) 

VR : Particle volume ratio between two neighboring particle size groups 

T : Absolute temperature (K) 

( )i jV V : Characteristic volume of size i particles (or size group j particles) (m3) 



1,j jV − : Threshold volume to separate size group j-1 and size group j particles in PSG method (m3) 

PV : Molar volume of precipitated phase (m3·mol-1) 

,M PX X : Molar concentration of precipitate-forming element in matrix and precipitate phases 

sZ : Number of bonds per atom across the interface 

lZ : Coordinate number of nearest neighbors within the crystal lattice 

iα : Dissociation rate of size i particles (#--1·m-2·s-1) 

iβ : Diffusion growth rate of size i particles (m3·#--1·s-1) 

δ : Relative lattice misfit across the interface between pairs of precipitate and matrix atoms 

,i kδ : Kronecker’s delta function (δi,k=1 for i=k, δi,k=0 for i≠k) 

ε :  Turbulent energy dissipation rate (m2·s-3) 

, ,M P Iμ μ μ : Shear modulus of the steel matrix, precipitate phase and interface (Pa) 

ν :  Kinematic viscosity (m2·s-1) 

,M Pν ν : Poisson’s ratio of the steel matrix and precipitate phases  

steelρ : Density of steel (kg·m-3) 

pρ : Density of precipitates (kg·m-3) 

σ : Interfacial energy between precipitated particle/steel matrix (J·m-2) 

cσ : Chemical interfacial energy between precipitated particle/steel matrix (J·m-2) 

stσ : Structural interfacial energy between precipitated particle/steel matrix (J·m-2) 

,i kΦ : Collision kernel between size i and size k particles (m3·#--1·s-1) 

0EΔ : Heat of solution of precipitate in a dilute solution of matrix (J·mol-1) 

VGΔ : Change of Gibbs free energy per unit volume between matrix solution and precipitate (J·m-3) 

HΔ : Heat of formation of precipitate (J·mol-1) 

 

Superscripts: 

∗ : Dimensionless value 

− : Average value 

L, R: Left and right border-size particles in each size group 

  

Functions: 



( )ceil x : The smallest integer which is not less than real number x  

( )floor x : The largest integer which is not larger than real number x  

 

Table I. Comparison of computational cost for test problems 

 Collision (t*=1) Diffusion (t*=10000) 

Exact PSG(Rv=2) PSG(Rv=3) Exact PSG(Rv=2) PSG(Rv=3) 

Storage n
M

=12000 N
G
=16 N

G
=11 n

M
=50000 N

G
=18 N

G
=13 

Computational time ~225 hours ~0.8s ~0.4s ~27 hours ~560s ~390s 

 

 

 

 
 
 

 



 

 

 
 
 

Fig.1–The schematic of particle size distribution in PSG method 
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Fig.2–Comparison of collision curve calculated by PSG method with exact solution for different RV 
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(a). RV=3 
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(b). RV=2 
 
 

Fig.3–Comparison of collision curve of each size group calculated by PSG method with exact solution 

for different RV 
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Fig.4–Comparison of diffusion curves calculated by PSG method with exact solution for different RV 
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(a). RV=3 
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(b). RV=2 
 
 

Fig.5–Comparison of evolving numbers of each size group calculated by PSG diffusion method with 

exact solution for different RV 

 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6–Calculated equilibrium dissolved mass concentration of C for Jones case[54] and N for 

Vodopivec case[58] showing aging test temperatures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

930oC

840oC

700oC 

600 700 800 900 1000 1100 1200 1300 1400
1E-6

1E-5

1E-4

1E-3

0.01

0.1

 

 

E
q

u
il

ib
ri

u
m

 d
is

so
lv

ed
 m

as
s 

co
n

ce
n

tr
at

io
n

 (
w

t%
)

Temperature (oC)

 [C] (Jones case)
 [N] (Vodopivec case)



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               
                                    Experiment                                                         Simulation 

 
 
 

Fig.7– Size distribution frequency of particles calculated in undeformed steel matrix compared with 

measurements from Jones at 930oC [54] 
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Fig.8–Calculated and measured precipitated fraction of AlN in 0.051wt%Al-0.0073wt%N steel during 

isothermal aging at 840oC and 700oC (experimental data from Vodopivec[58])  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

(a). 840oC 
 
 

 
 

(b). 700oC 
 

 
Fig.9–Calculated size distributions of AlN particles for 0.051wt%Al-0.0073wt%N steel during 

isothermal aging at 840oC and 700oC  

 



 

 

 

Fig.10–Calculated total number density of AlN particles for 0.051wt%Al-0.0073wt%N steel during 

isothermal aging at 840oC and 700oC  

 

 


	Article File
	Fig.1

